已知线段AB,在AB的延长线上取一点C,使AC=2BC,在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的( )倍.
A.![]() |
B.![]() |
C.![]() |
D.![]() |
将图1的正方形作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )
A.502 | B.503 | C.504 | D.505 |
在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22﹣12,16=52﹣32).已知智慧数按从小到大顺序构成如下数列:
3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….
则第2006个智慧数是( )
A.2672 | B.2675 | C.2677 | D.2680 |
数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2+1与y=的交点的横坐标x0的取值范围是( )
A.0<x0<1 |
B.1<x0<2 |
C.2<x0<3 |
D.﹣1<x0<0 |
二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中,正确的是( )
A.abc<0 |
B.a+c<b |
C.b>2a |
D.4a>2b﹣c |