(本小题满分14分)
已知函数
(Ⅰ)若,求
的单调区间及
的最小值;
(Ⅱ)若,求
的单调区间;
(Ⅲ)证明:
(本题满分15分)已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(
,
).
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
(本题满分14分) 甲、乙两队各有n个队员,已知甲队的每个队员分别与乙队的每个队员各握手一次 (同队的队员之间不握手),从这n2次的握手中任意取两次.记
事件A:两次握手中恰有4个队员参与;
事件B:两次握手中恰有3个队员参与.
(Ⅰ) 当n=4时,求事件A发生的概率P(A);
(Ⅱ) 若事件B发生的概率P (B)<,求n的最小值.
(本题满分14分) 在△ABC中,角A,B,C所对的边为a,b,c,已知sin=
.
(Ⅰ) 求cos C的值;
(Ⅱ) 若△ABC的面积为,且sin2 A+sin2B=
sin2 C,
求a,b及c的值.
已知(其中
为实数).
(1)若在
处取得极值为2,求
的值;
(2)若在区间
上为减函数且
,求
的取值范围.
本题满分12分)
在一条笔直的工艺流水线上有三个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,每个工作台上有若干名工人.现要在
与
之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(1)若每个工作台上只有一名工人,试确定供应站的位置;
(2)设三个工作台从左到右的人数依次为2,1,3,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.