如图甲,在平面四边形ABCD中,已知
,
,现将四边形ABCD沿BD折起,
使平面ABD平面BDC(如图乙),设点E、F分别为棱
AC、AD的中点.
(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦.
|
|||
|
|||
选做题(本小题满分10分。请考生三两题中任选一题做答,如果多做,
则按所做的第一题记分)
选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,BH=2。1)求DE的长;
(2)延长ED到P,过P作圆O的切线,
切点为C,若PC=2,求PD的长。
选修4-5:不等式选讲
(Ⅰ)若与2的大小,不用说明理由;
(Ⅱ)设m是和1中最大的一个,当
已知函数
(1)当时,求函数
的单调区间;
(2)求函数在区间
上的最小值.
已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,且满足||||+·=0.
(1)求点P的轨迹C的方程;
(2)设过点N的直线l的斜率为k,且与曲线C相交于点S、T,若S、T两点只在第二象限内运动,线段ST的垂直平分线交x轴于Q点,求Q点横坐标的取值范围.
正△的边长为4,
是
边上的高,
分别是
和
边的中点,现将△
沿
翻折成直二面角
.
(1)试判断直线与平面
的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点
,使
?证明你的结论.
(12分)已知数列是各项均不为0的等差数列,
为其前
项和,且满足
,令
,数列
的前n项和为
.
(Ⅰ)求数列的通项公式及数列
的前n项和
;
(Ⅱ)是否存在正整数,使得
成等比数列?若存在,求出所有的
的值;若不存在,请说明理由.