如图所示 ,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角 θ = 37°,A、C、D滑块的质量为 mA= mC= mD=" m" =" 1" kg,B滑块的质量 mB =" 4" m =" 4" kg(各滑块均视为质点)。A、B间夹着质量可忽略的火药。K为处于原长的轻质弹簧,两端分别连接住B和C。现点燃火药(此时间极短且不会影响各物体的质量和各表面的光滑程度),此后,发现A与D相碰后粘在一起,接着沿斜面前进了L =" 0.8" m 时速度减为零,此后设法让它们不再滑下。已知滑块A、D与斜面间的动摩擦因数均为 μ = 0.5,取 g = 10 m/s2,sin37°= 0.6,cos37°= 0.8。求:
(1)火药炸完瞬间A的速度vA;
(2)滑块B、C和弹簧K构成的系统在相互作用过程中,弹簧的最大弹性势能Ep。(弹簧始终未超出弹性限度)。
22. 在一次国际城市运动会中,要求运动员从高为H的平台上A点由静止出发,沿着动摩擦因数为滑的道向下运动到B点后水平滑出,最后落在水池中。设滑道的水平距离为L,B点的高度h可由运动员自由调节(取;g=10m/s2)。求:
(1)运动员到达B点的速度与高度h的关系;
(2)运动员要达到最大水平运动距离,B点的高度h应调为多大?对应的最大水平距离SBH为多少?
(3若图中H=4m,L=5m,动摩擦因数=0.2,则水平运动距离要达到7m,h值应为多少?
22.如图所示,物体A放在足够长的木板B上,木板B静止于水平面。t=0时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零,加速度aB=1.0m/s2的匀加速直线运动。已知A的质量mA和B的质量mg均为2.0kg,A、B之间的动摩擦因数=0.05,B与水平面之间的动摩擦因数
=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g取10m/s2。求
(1)物体A刚运动时的加速度aA
(2)t=1.0s时,电动机的输出功率P;
(3)若t=1.0s时,将电动机的输出功率立即调整为P`=5W,并在以后的运动过程中始终保持这一功率不变,t=3.8s时物体A的速度为1.2m/s。则在t=1.0s到t=3.8s这段时间内木板B的位移为多少?
14. (16分)在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。如图所示,他们将选手简化为质量m=60kg的指点, 选手抓住绳由静止开始摆动,此事绳与竖直方向夹角=
,绳的悬挂点O距水面的高度为H=3m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。取中立加速度
,
,
求选手摆到最低点时对绳拉力的大小F;
若绳长l="2m," 选手摆到最高点时松手落入手中。设水碓选手的平均浮力,平均阻力
,求选手落入水中的深度
;
若选手摆到最低点时松手, 小明认为绳越长,在浮台上的落点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明你的观点。
30.如图,ABC和ABD为两个光滑固定轨道,A、B、E在同一水平面,C、D、E在同一竖直线上,D点距水平面的高度h,C点高度为2h,一滑块从A点以初速度分别沿两轨道滑行到C或D处后水平抛出。
(1)求滑块落到水平面时,落点与E点间的距离和
.
(2)为实现<
,
应满足什么条件?
24.(15)如图,MNP 为整直面内一固定轨道,其圆弧段MN与水平段NP相切于N、P端固定一竖直挡板。M相对于N的高度为h,NP长度为s.一木块自M端从静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞后停止在水平轨道上某处。若在MN段的摩擦可忽略不计,物块与NP段轨道间的滑动摩擦因数为μ,求物块停止的地方与N点距离的可能值。