游客
题文

(本小题满分12分)
已知函数.
(1)用定义证明:不论为何实数上为增函数;
(2)若为奇函数,求的值;
(3)在(2)的条件下,求在区间[1,5]上的最小值.

科目 数学   题型 解答题   难度 较易
知识点: 原根与指数
登录免费查看答案和解析
相关试题

如图,在四棱锥中,底面正方形,其他四个侧面都是等边三角形,的交点为为侧棱上一点.

(Ⅰ)当为侧棱的中点时,求证:∥平面
(Ⅱ)求证:平面平面
(Ⅲ)(理科)当二面角的大小时,试判断点上的位置,并说明理由.

甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.


优秀
非优秀
总计
甲班
10


乙班

30

合计


105

已知在全部105人中抽到随机抽取1人为优秀的概率为
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” .
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
参考公式:

在△ABC中,角A、B、C的对边分别为a、b、c,若
(Ⅰ)求证:A=B;
(Ⅱ)求边长c的值;
(Ⅲ)若求△ABC的面积.

已知函数,其中
(1)求函数的单调区间;
(2)若直线是曲线的切线,求实数的值;
(3)设,求在区间上的最大值(其为自然对数的底数)。

如图所示,设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图。若抛物线C2:与y轴的交点为B,且经过F1,F2点

(1)求椭圆C1的方程;
(2)设M),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号