(本小题满分13分)
在一个盒子中,放有标号分别为2,3,4的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记
.
(I)求随机变量的最大值,并求事件“
取得最大值”的概率;
(Ⅱ)求随机变量的分布列和数学期望.
若定义在上的函数
满足条件:存在实数
且
,使得:
⑴ 任取,有
(
是常数);
⑵ 对于内任意
,当
,总有
。
我们将满足上述两条件的函数称为“平顶型”函数,称
为“平顶高度”,称
为“平顶宽度”。根据上述定义,解决下列问题:
(1)函数是否为“平顶型”函
数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由。
(2) 已知是“平顶型”函数,求出
的值。
(3)对于(2)中的函数,若
在
上有两个不相等的根,求实数
的取值范围。
已知是公差为
的等差数列,它的前
项和为
, 等比数列
的前
项和为
,
,
,
(1)求公差的值;
(2)若对任意的,都有
成立,求
的取值范围;
(3)若,判别方程
是否有解?说明理由.
已知函数,且
.
(1)求实数c的值;
(2)解不等式
设函数。
(1)当时,求函数
的最小值;
(2)当时,试判断函数
的单调性,并证明。
已知△的周长为
,且
.
(1)求边长的值;
(2)若(结果用反三角函数值表示).