设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆恰好与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由。
已知a=,b=9.求: (1) (2).
已知函数y=f(x)对任意x,y∈R均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)="-" . (1)判断并证明f(x)在R上的单调性; (2)求f(x)在[-3,3]上的最值.
化简下列各式(其中各字母均为正数): (1) (2)
求下列函数的定义域、值域及其单调区间: (1)f(x)=3; (2)g(x)=-(.
.已知函数f(x)=x2+|x-a|+1,a∈R. (1)试判断f(x)的奇偶性; (2)若-≤a≤,求f(x)的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号