设椭圆的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(1)求椭圆
的离心率;
(2)若过三点的圆恰好与
直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由。
已知两个关于x的一元二次方程和
,求两方程的根都是整数的充要条件.
已知,
,若
是
的必要而不充分条件,求实数
的取值范围.
已知函数,
.
(1)若在
处与直线
相切,求a,b的值;
(2)在(1)的条件下,求在
上的最大值;
(3)若不等式对所有的
,
都成立,求a的取值范围.
已知椭圆,椭圆
的中心在坐标原点,焦点在y轴上,与
有相同的离心率,且过椭圆
的长轴端点.
(1)求椭圆的标准方程;
(2)设O为坐标原点,点A,B分别在椭圆和
上,若
,求直线AB的方程.
高三年级进行模拟考试,某班参加考试的40名同学的成绩统计如下:
规定分数在90分及以上为及格,120分及以上为优秀,成绩高于85分低于90分的同学为希望生,已知该班希望生有2名.
(1)从该班所有学生中任选一名,求其成绩及格的概率;
(2)当时,从该班所有学生中任选一名,求其成绩优秀的概率;
(3)从分数在的5名学生中,任选2名同学参加辅导,求其中恰有1名希望生的概率.