一位蹦床运动员仅在竖直方向上运动,蹦床对运动员的弹力F随时间t的变化规律通过传感器用计算机绘制出来,如图所示。设运动过程中不计空气阻力,g取10m/s2。结合图象,试求:
(1)运动员的质量m;
(2)运动过程中,运动员的最大加速度;
(3)运动员离开蹦床上升的最大高度。
如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m1和m2,拉力F1和F2方向相反,与轻线沿同一水平直线,且F1>F2。试求在两个物块运动过程中轻线的拉力T。
两根平行金属导轨固定倾斜放置,与水平面夹角为37°,相距d=0.5 m,a、b间接一个电阻为R=1.5 Ω.在导轨上c、d两点处放一根质量m=0.05 kg的金属棒,bc长L=1 m,金属棒与导轨间的动摩擦因数μ=0.5.金属棒与导轨接触点间电阻r=0.5 Ω, 金属棒被两个垂直于导轨的木桩顶住而不会下滑,如图甲所示.在金属导轨区域加一个垂直导轨斜向下的匀强磁场,磁场随时间的变化关系如图乙所示.重力加速度g=10 m/s2.(sin 37°=0.6,cos 37°=0.8).求:
(1)0~1.0 s内回路中产生的感应电动势大小;
(2)t=0时刻,金属棒所受的安培力大小;
(3)在磁场变化的全过程中,若金属棒始终没有离开木桩而上升,则图乙中t0的最大值;
(4)通过计算在图中画出0~t0max内金属棒受到的静摩擦力随时间的变化图象.
如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距L=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T,棒在水平向右的外力作用下,由静止开始做匀加速直线运动,当棒运动的位移x=9m时速度达到6m/s,此时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1,导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求
(1) 棒在匀加速运动过程中,通过电阻R的电荷量q
(2) 金属棒MN做匀加速直线运动所需外力随时间变化的表达式
(3) 外力做的功WF
一个电阻为r、边长为L的正方形线圈abcd共N匝,线圈在磁感应强度为B的匀强磁场中绕垂直于磁感线的轴OO′以如图所示的角速度ω匀速转动,外电路电阻为R.
(1)线圈转动过程中感应电动势的最大值有多大?
(2)线圈平面与磁感线夹角为60°时的感应电动势为多大?
(3)设发电机由柴油机带动,其他能量损失不计,线圈转一周,柴油机做多少功?
(4)从图示位置开始,线圈转过60°的过程中通过R的电量是多少?
如图所示,边长为L的正方形金属框,质量为m,电阻为R,用细线把它悬挂于一个有界的匀强磁场边缘,金属框的上半部处于磁场内,下半部处于磁场外.磁场随时间变化规律为B=kt(k>0),已知细线所能承受的最大拉力为2mg,求:
⑴线圈的感应电动势大小;
⑵细绳拉力最大时,导体棒受到的安培力大小;
⑶从t=0开始直到细线会被拉断的时间。