(本小题满分12分)
某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.
若菜园恰能在约定日期(月
日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提
前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.
为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:
统计信息 汽车行 驶路线 |
不堵车的情况下到达亚运村乙所需时间 (天) |
堵车的情况下到达亚运村乙所需时间 (天) |
堵车的 概率 |
运费 (万元) |
公路1 |
2 |
3 |
![]() |
![]() |
公路2 |
1 |
4 |
![]() |
![]() |
(注:毛利润销售商支付给菜园的费用
运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为(单位:万元),求
的分布列和数学期望
;
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?
设椭圆的离心率与双曲线
的离心率互为倒数,且椭圆的长轴长为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线交椭圆
于
两点,
为椭圆
上一点,求
面积的最大值.
从某学校的名男生中随机抽取
名测量身高,被测学生身高全部介于
和
之间,将测量结果按如下方式分成八组:第一组
,第二组
,第八组
,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为
人。
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的名男生的身高的中位数以及身高在
以上(含
)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件
,事件
,求
已知数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求适合方程
的正整数
的值。
函数
(Ⅰ)求的值域和单调递减区间;
(Ⅱ)在中角
所对的边分别是
,且
,
,
,求
的面积。
已知函数,
,其中
(Ⅰ)若函数有极值
,求实数
的值;
(Ⅱ)若函数在区间
上是增函数,求实数
的取值范围;
(Ⅲ)证明: