某中学共有学生2000名,各年级男女生人数如下表:
|
六年级 |
七年级 |
八年级 |
九年级 |
男生 |
250 |
z |
254 |
258 |
女生 |
x |
244 |
y |
252 |
若从全校学生中任意抽一名,抽到六年级女生的概率是0.12;若将各年级的男、女生人数制作成扇形统计图,八年级女生对应扇形的圆心角为44.28°.
(1)求x,y,z的值;
(2)求各年级男生的中位数;
(3)求各年级女生的平均数;
(4)从八年级随机抽取36名学生参加社会实践活动,求抽到八年级某同学的概率.
(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?
(2)如果两楼之间相距MN=m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?
计算下列各题:
(1)(2)
平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC.
(1)求此抛物线的解析式;
(2)若点P是线段BC上的一个动点,过点P作y轴的平行线与抛物线在x轴下方交于点Q,试问线段PQ的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由;
(3)若此抛物线的对称轴上的点M满足∠AMC=45°,求点M的坐标.
如图,AB是⊙O的直径,,M是弧AB的中点,OC⊥OD,△COD绕点O旋转与△AMB的两边分别交于E、F(点E、F与点A、B、M均不重合),与⊙O分别交于P、Q两点.
(1)求证:;
(2)连接PM、QM,试探究:在△COD绕点O旋转的过程中,∠PMQ是否为定值?若是,求出∠PMQ的大小;若不是,请说明理由;
(3)连接EF,试探究:在△COD绕点O旋转的过程中,△EFM的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由
如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.
(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;
(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?