如图12所示的方格纸中,点C是∠AOB的边OB上的一点,按下列要求画图并回答问题.
(1)过点C画OB的垂线,交OA于点D,该垂线是否经过格点?若经过格点,请在图中标出垂线所经过的格点;
(2)过点C画OA的垂线,垂足为E.
① 线段CE的长度是点C到 的距离, 是点D到OB的距离;
② 因为直线外一点与直线上各点连接的所有线段中,垂线段最短,所以线段CD、CE、OD、OC这四条线段大小关系是 (用“<”号连接);
(3)过D点画直线DF∥OB,若∠AOB=x°,则∠ADC=" " (用含x的代数式表示).
(·辽宁锦州)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).
(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是 ;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
(·辽宁锦州)开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.
(1)图中线段AB所表示的实际意义是 ;
(2)请直接写出y与x之间的函数关系式 ;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?
(·辽宁本溪)如图,抛物线(
)经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(﹣4,0),点F与原点重合.
(1)求抛物线的解析式并直接写出它的对称轴;
(2)△DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,设△DEF与△OBC的重叠部分的面积为S,求出S关于t的函数关系式;
(3)点P是抛物线对称轴上一点,当△ABP时直角三角形时,请直接写出所有符合条件的点P坐标.
(·辽宁本溪)如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)
(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是 ;
(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).
如图,在平面直角坐标系中,抛物线与
轴交于
两点,与
轴交于点
,且点
的坐标为
点
在这条抛物线上,且不与
两点重合,过点
作
轴的垂线与射线
交于点
,以
为边作
使
点
在点
的下方,且
设线段
的长度为
,点
的横坐标为
.
(1)求这条抛物线所对应的函数表达式;
(2)求与
之间的函数关系式;
(3)当的边
被
轴平分时,求
的值;
(4)以为边作等腰直角三角形
,当
时,直接写出点
落在
的边上时
的值.