如图,两点在函数
的图象上.
(1).求的值及直线
的解析式
(2).如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,请直接写出图中阴影部分(不包括边界)所含格点的个数.
图中阴影部分(不包括边界)所含格点的个数是.………………6分
先化简,再求值:,其中
.
如图,点在抛物线
上,过点
作与
轴平行的直线交抛物线于点
,延长
分别与抛物线
相交于点
,连接
,设点
的横坐标为
,且
.
(1).当时,求点
的坐标;
(2).当为何值时,四边形
的两条对角线互相垂直;
(3).猜想线段与
之间的数量关系,并证明你的结论.
.随着世界气候大会于2009年12月7-18日在丹麦首都哥本哈根的召开,“低碳”概念风靡全球。在“低碳”理念的引领下,某市为实现森林城市建设的目标,在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗,某树苗公司提供如下信息:
信息一:可供选择的树苗有雪松、香樟,垂柳三种,并且要求购买雪松、香樟的数量相等。
信息二:如下表:
设购买雪松,垂柳分别为x株、y株。
(1).写出y与x之间的函数关系式(不要求写出自变量的取值范围);
(2).当每株垂柳的批发价P等于30元时,要使这400株树苗两年后对该住宅小区的空气净化指数不低于90,应怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元?
(3).当每株垂柳批发价格P(元)与购买数量y(株)之间存在关系P=30-0.05y时,求购买树苗的总费用W(元)与购买雪松数量x(株)之间的函数关系式(不要求写出自变量的取值范围),并求出购买树苗总费用的最大值。
如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.
(1)求证:AD平分∠CAE;
(2).若DE=4cm,AE=2cm,求⊙O的面积。