游客
题文

(本小题满分14分)
知直线与圆相交于两点,点满足
(Ⅰ)当时,求实数的值;
(Ⅱ)当时,求实数的取值范围;
(Ⅲ)设是圆:上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.

科目 数学   题型 解答题   难度 较易
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m.设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)

(I)将y表示为x的函数;
(II)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用

已知圆C:,直线
(I)证明:不论m取什么实数,直线与圆恒交于两点;
(II)求直线被圆截得的弦长最小时的方程,并求此时的弦长

如图,在棱长为2的正方体中,分别是的中点,求异面直线所成角的正切值

解关于的不等式,其中

在平面直角坐标系XOY中,A,B分别为直线x+y=2与x、y轴的交点,C为AB的中点. 若抛物线(p>0)过点C,求焦点F到直线AB的距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号