(1)(本小题满分7分)
选修4-4:矩阵与变换
已知矩阵
,A的一个特征值
,其对应的特征向量是
.
(Ⅰ)求矩阵;
(Ⅱ)求直线在矩阵M所对应的线性变换下的像的方程
(2)
(本小题满分7分)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:
,
求直线l与曲线C相交所成的弦的弦长.
((3)(本小题满分7分)
选修4-5:不等式选讲解不等式∣2x-1∣<∣x∣+1
设函数,(1)求
的振幅,周期和初相;(2)求
的最大值并求出此时
值组成的集合。(3)求
的单调减区间.
已知向量
(1)若,求
的值;
(2)若,
与
所成的角为
,求
在数列中,
,且对任意k
,
成等差数列,其公差为
.
⑴求;
⑵求数列的通项公式;
⑶记.,证明:
.
已知椭圆中心在坐标原点,焦点在
轴上,且经过
、
、
三点.
(1)求椭圆的方程;
(2)设直线与椭圆
交于
、
两点.
①若,求
的长;
②证明:直线与直线
的交点在直线
上.
一校办服装厂花费2万元购买某品牌运动装的生产与销售权.根据以往经验,每生产1百套这种品牌运动装的成本为1万元,每生产(百套)的销售额
(万元)满足:
(1)该服装厂生产750套此种品牌运动装可获得利润多少万元?
(2)该服装厂生产多少套此种品牌运动装利润最大?此时,利润是多少万元?