游客
题文

(本小题满分13分)已知椭圆的中心在原点,一个焦点F1(0,-2),且离心率e满足:,e,成等比数列.
(1)求椭圆方程;
(2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-
平分.若存在,求出l的倾斜角的范围;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

在平面直角坐标系xOy中,已知M是椭圆=1上在第一象限的点,A(2,0),B(0,2)
是椭圆两个顶点,求四边形OAMB的面积的最大值.

已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.

已知圆O的内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一
点,AE为圆O的切线,求证:CD2=BD·EC.

已知a,b是不相等的正数,在a,b之间分别插入m个正数a1,a2, ,am和正数b1,b2, ,
bm,使a,a1,a2, ,am,b是等差数列,a,b1,b2, ,bm,b是等比数列.
(1)若m=5,,求的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此时m的值;
(3)求证:an>bn(n∈N*,n≤m).

已知函数f(x)=lnx-mx(mR).
(1)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;
(2)求函数f(x)在区间[1,e]上的最大值;
(3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号