(本小题满分13分)已知椭圆的中心在原点,一个焦点F1(0,-2),且离心率e满足:
,e,
成等比数列.
(1)求椭圆方程;
(2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-
平分.若存在,求出l的倾斜角的范围;若不存在,请说明理由.
已知函数,
,且
的解集为
.
(1)求的值;
(2)若,且
,求
的最小值.
已知函数f(x)=x
-ax+(a-1)
,
.
(1)讨论函数的单调性;(2)若
,设
,
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x,x
,x
x
,有
.
某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近视地表示为,已知此生产线的年产量最大为210吨.
(Ⅰ) 求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;
(Ⅱ)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点.
(Ⅰ) 证明EF//平面A1CD;
(Ⅱ) 证明平面A1CD⊥平面A1ABB1;
(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.
定义域为的奇函数
满足
,且当
时,
.
(Ⅰ)求在
上的解析式;
(Ⅱ)当取何值时,方程
在
上有解?