如图所示,在坐标原点O处,能向四周均匀发射速度大小相等、方向都平行于纸面的带正电粒子。在O点右侧有一半径为R的圆形薄板,薄板中心O′位于x轴上,且与x轴垂直放置,薄板的两端M、N与原点O正好构成等腰直角三角形。已知带电粒子的质量为m,带电量为q,速率为v,重力不计。
(1)要使y轴右侧所有运动的粒子都能打到薄板MN上,可在y轴右侧加一平行于x轴的匀强电场,则场强的最小值E0为多大?在电场强度为E0时,打到板上的粒子动能为多大?
(2)要使薄板右侧的MN连线上都有粒子打到,可在整个空间加一方向垂
直纸面向里的匀强磁场,则磁场的磁感应强度不能超过多少(用m、v、q、R表示)?若满足此条件,从O点发射出的所有带电粒子中有几分之几能打在板的左边?
如图,为某种透明材料做成的三棱镜横截面,其形状是边长为a的等边三角形,现用一束宽度为a的单色平行光束,以垂直于BC面的方向正好入射到该三棱镜的AB及AC面上,结果所有从AB、AC面入射的光线进入后恰好全部直接到达BC面。试求:这些到达BC面的光线从BC面折射而出后,如果照射到一块平行于BC面的足够大屏上形成光斑,则当屏到BC面的距离
时,光斑最外沿间的距离是多少?
图为一个横截面积足够大的喷水装置,内部装有200L水,上部密封1atm的空气1.0L。保持阀门关闭,再充入2atm的空气1.0L。设在所有过程中空气可看作理想气体,且温度不变。
①求充入2atm的空气1.0L后密封气体的压强
②打开阀门后,水从喷嘴喷出(喷嘴与水平等高),通过计算,画出喷水过程中气体状态变化的图象,求最后容器内剩余水的体积。(不计阀门右侧的管中水的体积及喷嘴与装置中水平的高度差)
如图所示,在半径为R,圆心在(0,0)的圆形磁场区域内,加有方向垂直纸面向外、磁感强度为B的匀强磁场。一个质量为m、带电量为+q的带电粒子(不计重力),以某一速度从O点沿y轴的正方向进入磁场,从图中的A点射出。出射的方向与圆在A点的切线方向夹角为600。 如果再在x>R的BC区域加一宽度为2R的方向竖直向下的匀强电场,让在A点射出的带电粒子经电场后,能恰好击中x轴上的点C(坐标为(0,3R))。求:
(1)带电粒子的初速度大小
(2)所加电场E的大小
如图所示,有一条沿顺时针方向匀速传送的传送带,恒定速度v=4 m/s,传送带与水平面的夹角θ=37°,现将质量m=1kg的小物块轻放在其底端(小物块可视作质点),与此同时,给小物块沿传送带方向向上的恒力F=8N,经过一段时间,小物块上到了离地面高为
=2.4 m的平台上。已知物块与传送带之间的动摩擦因数μ=0.5,(g取10 m/s2, sin37°=0.6,cos37°=0.8).问:
(1)物块从传送带底端运动到平台上所用的时间?
(2)若在物块与传送带达到相同速度时,立即撤去恒力F,计算小物块还需经过多少时间离开传送带以及离开时的速度?
如图所示,有一内表面光滑的金属盒,底面长为L=1.2m,质量为m1=1kg,放在水平面上,与水平面间的动摩擦因数为μ=0.2,在盒内最右端放一半径为r=0.1m的光滑金属球,质量为m2=1kg,现在盒的左端,给盒一个初速度v=3m/s(盒壁厚度,球与盒发生碰撞的时间和能量损失均忽略不计,g取10m/s2)求:金属盒从开始运动到最后静止所经历的时间?