(某篮球联赛的总决赛在甲、乙两队之间角逐。采用七场四胜制,即有一队胜四场,则此队获胜,同时比赛结束。在每场比赛中,两队获胜的概率相等。根据以往资料统计,每场比赛组织者可获门票收入32万元,两队决出胜负后,问:(1)组织者在此次决赛中,获门票收入为128万元的概率是多少?(2)设组织者在此次决赛中获门票收入为,求的分布列及。
(本小题满分12分) 在平面直角坐标系中,O为坐标原点,A、B、C三点满足 (Ⅰ)求证:A、B、C三点共线; (Ⅱ)求的值; (Ⅲ)已知、, 的最小值为,求实数的值.
(本小题满分12分) 已知是奇函数 (Ⅰ)求的值,并求该函数的定义域; (Ⅱ)根据(Ⅰ)的结果,判断在上的单调性,并给出证明.
( 本小题满分12分) 设函数图像的一条对称轴是直线 (Ⅰ)求; (Ⅱ)求函数的单调区间及最值;
(本小题满分12分) 已知a为实数,。 (1)若,求在[-2,2] 上的最大值和最小值;; (2)若在(-∞,-2)和(2,+∞)上都是递增的,求a的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号