半径为R的水平圆台,可绕通过圆心O的竖直光滑细轴CC′转动,如图所示,圆台上沿相互垂直的两个半径方向刻有凹槽,质量为mA的物体A放在一个槽内,物体A与槽底间的动摩擦因数为μ,质量为mB的物体B放在另一个槽内,此槽是光滑的.AB间用一长为l(l<R)且不可伸长的轻绳绕过细轴相连.已知圆台做匀速转动,且A、B两物体相对圆台不动(A、B两物体可视为质点,物体的最大静摩擦力近似等于滑动摩擦力).
(1)当圆台转动的角速度为ω0,OA的长度为l1时,试写出A、B两个物体受到的向心力大小的表达式.
(2)不论圆台转动的角速度为多大,要使物体A和槽之间恰好没有摩擦力,则OA的长为多大?
(3)设OA长为x,试分析圆台的角速度ω和物体A到圆心的距离x所应满足的条件.
如图所示,轻弹簧的两端与质量均为2m的B、C两物块固定连接,静止在光滑水平面上,物块C紧靠挡板但不粘连.另一质量为m的小物块A以速度V0从右向左与B发生弹性正碰,碰撞时间极短可忽略不计.(所有过程都在弹簧弹性限度范围内)求:
(1)A、B碰后瞬间各自的速度;
(2)弹簧第一次压缩最短与第一次伸长最长时弹性势能之比.
A、B为竖直墙壁上等高的两点,AO、BO为长度相等的两根轻绳,CO为一根轻杆。转轴C在AB中点D的正下方,AOB在同一水平面上。∠AOB=90º,∠COD=60º。若在O点处用轻绳悬挂一个质量为m的物体,求平衡后绳AO所受拉力的大小。
光滑水平面上放着质量mA=1kg的物块A与质量mB=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,用手挡住B不动,此时弹簧弹性势能Ep=49J。如图所示,放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C取g=10m/s2,求
(1)B落地点距P点的距离(墙与P点的距离很远)
(2)绳拉断后瞬间B的速度vB的大小
(3) 绳拉断过程绳对A所做的功W.
如图所示,一电子(其重力不计,质量为m、电荷量为e,由静止开始,经加速电场加速后,水平向右从两板正中间射入偏转电场.偏转电场由两块水平平行放置的长为l相距为d的导体板组成,当两板不带电时,电子通过两板之间的时间均为t0,当在两板间加电压为U0时,电子可射出偏转电场,并射入垂直纸面向里的匀强磁场,最后打在磁场右侧竖直放置的荧光屏上.磁场的水平宽度为s,竖直高度足够大。求:
(1)加速电场的电压;
(2)电子在离开偏转电场时的侧向位移;
(3)要使电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多大?
如图所示,将直径为2R的半圆形导轨固定在竖直面内的A、B两点,直径AB与竖直方向的夹角为60°。在导轨上套一质量为m的小圆环,原长为2R、劲度系数的弹性轻绳穿过圆环且固定在A、B两点。已知弹性轻绳满足胡克定律,形变量相同时弹性势能也相等,且弹性绳始终在弹性限度内,重力加速度为g,不计一切摩擦。将圆环由A点正下方的C点静止释放,当圆环运动到导轨的最低点D点时,求
(1)圆环的速率v;
(2)导轨对圆环的作用力F的大小?