如图甲所示,宽度为d的竖直狭长区域 内(边界为L1、L2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图7乙所示),电场强度的大小为E0,E>0表示电场方向竖直向上.t=0时,一带正电、质量为m的尘埃从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的圆周运动,再沿直线运动到右边界上的N2点.Q为线段N1N2的中点,重力加速度为g.上述d、E0、m、v、g为已知量.
(1)求微粒所带电荷量q和磁感应强度B的大小;
(2)求电场变化的周期T;
(3)改变宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,求T的最小值.
竖直悬挂一根长15m的杆,在杆的正下方距杆下端5m处有一观察点A,当杆自由下落时,杆全部通过A点需多长时间?(g取10m/s2)
一辆卡车初速度为10m/s,以a=2m/s
的加速度做匀加速直线运动,求:
(1)卡车在第6s末的速度多大?
(2)卡车在前6s内的位移多大?
(3)卡车在前6s内的平均速度多大?
(4)卡车在第6s内的位移多大?
质量M=9kg、长L=1m的木板在动摩擦因数μ1=0.1的水平地面上向右滑行,当速度v0=2m/s时,在木板的右端轻放一质量m=1kg的小物块如图所示.当小物块刚好滑到木板左端时,物块和木板达到共同速度。取g=10m/s2,求:
(1)从物块放到木板上到它们达到共同速度所用的时间t.
(2)小物块与木板间的摩擦因数μ2。
(3)物块从放上木板到停下来经过的位移。
如图所示,质量m=2.0kg的木块静止在高h=1.8m的水平平台上,木块距平台右边缘d=7.75m,木块与平台间的动摩擦因数μ=0.2.用F=20N的水平拉力拉木块,木块向右运动s1=4.0m时撤去F.不计空气阻力,g取10m/s2.求:
(1)F作用于木块的时间;
(2)木块离开平台时的速度大小;
如图所示,拉杆箱是由拉杆和箱子构成的交通旅游工具.设箱子的质量为m,拉杆质量可忽略.箱子与水平地面之间的动摩擦因数为常数μ,重力加速度为g.某同学在水平地面上拉动拉杆箱,设拉力的方向沿拉杆方向,拉杆与水平方向的夹角为θ.
(1)若箱子在水平地面上匀速移动,求拉力的大小;
(2)已知θ存在一临界角θ0,若θ=θ0,则箱子在水平地面上匀速移动时,拉力有最小值,求这一临界角的正切tanθ0和对应的拉力最小值.