(本题满分12分)已知椭圆的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点(4,0)且不与坐标轴垂直的直线交椭圆
于
、
两点,设点
关于
轴的对称点为
.求证:直线
过
轴上的一定点,并求出此定点坐标.
(本题满分10分,每小题各5分)计算下列各式
(1)
(2)
(本小题满分10分)设全集,
,
.
(1)求,
,
,
;
(2)求,
.
(本小题满分12分)
已知实数,且
依次成等差数列,
(1)求实数的值;
(2)若数列满足
求
的通项公式;
(3)在(2)的条件下,是否存在实数,对任意
,不等式
恒成立,若存在,求
的取值范围;否则说明理由.
(本小题满分12分)
设函数。
(1)若对于恒成立,求实数
的取值范围.
(2)若对于恒成立,求实数
的取值范围.
(本小题满分12分)
某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。该公司第n年需要付出设备的维修和工人工资等费用的信息如图,其中点
落在一条直线上.
(1)求;
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大?