若,
表示不同的直线,
表示两个不同的平面,给出如下四组命题:
①“直线为异面直线”的充分非必要条件是“直线
不相交”;
②“⊥
”的充要条件是“直线
垂直于平面
内的无数多条直线”;
③“∥
”的充分非必要条件是“
上存在两点到
的距离相等”.
④“∥
”的必要非充分条件是“存在
且
∥
,
∥
”.
其中正确的命题是( )
A.④ | B.③④ | C.①② | D.② |
如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
若直线过圆
的圆心,则实数
的值为()
A.![]() |
B.1 | C.3 | D.![]() |
下列命题中正确的是()
A.一直线与一平面平行,这个平面内有无数条直线与它平行. |
B.平行于同一直线的两个平面平行. |
C.与两相交平面的交线平行的直线必平行于这两个相交平面. |
D.两条平行直线中的一条与一个平面平行,则另一条也与该平面平行. |
直线与直线
的位置关系是()
A.相交 | B.平行 | C.重合 | D.异面 |
定义区间的长度均为
,用
表示不超过
的最大整数,例如
,
,记
,设
,若用
表示不等式
解集区间的长度,则当
时有
A.![]() |
B.![]() |
C.![]() |
D.![]() |