(本小题满分14分)
已知数列是首项为
,公差为
的等差数列,
是首项为
,公比为
的等比数列,且满足
,其中
.
(Ⅰ)求的值;
(Ⅱ)若数列与数列
有公共项,将所有公共项按原顺序排列后构成一个新数列
,求数列
的通项公式;
(Ⅲ)记(Ⅱ)中数列的前项之和为
,求证:
.
如图,正四棱锥中,
,
点M,N分别在PA,BD上,且.
(Ⅰ)求异面直线MN与AD所成角;
(Ⅱ)求证:∥平面PBC;
(Ⅲ)求MN与平面PAB所成角的正弦值.
将一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为.
(1)求的概率;
(2)求的概率P;
(3)试将右侧求⑵中概率P的伪代码补充完整.
设点A为单位圆上一定点,求下列事件发生的概率:
(1)在该圆上任取一点B,使AB间劣弧长不超过;
(2)在该圆上任取一点B,使弦AB的长度不超过。
已知直线与椭圆
相交于A、B两点.。
(1)若椭圆的离心率为,焦距为2,求线段AB的长;
(2)若向量与向量
互相垂直(其中O为坐标原点),当椭圆的离心率e=2时,求椭圆的长轴的长.
.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)设SD = 2CD,求二面角A-EF-D的大小;