(本小题满分12分)
如图,五面体中,
.底面
是正三角形,
.四边形
是矩形,二面角
为直二面角.
(Ⅰ)在
上运动,当
在何处时,有
∥平面
,
并且说明理由;
(Ⅱ)当∥平面
时,求二面角
余弦值.
写出下列命题的逆命题、否命题、逆否命题,并指出他们的真假:
(1)若xy=0,则x,y中至少有一个是0;
(2)若x>0,y>0,则xy>0;
把命题“未位数是0的整数可以被5整除”改写为“若p则q”的形式,并写出它的逆命题、否命题与逆否命题
等比数列中,
,
,
分别是下表第一、二、三行中的某一个数,且
,
,
中的任何两个数不在下表的同一列.
第一列 |
第二列 |
第三列 |
|
第一行 |
3 |
2 |
10 |
第二行 |
6 |
4 |
14 |
第三行 |
9 |
8 |
18 |
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足:
,求数列
的前
项和
.
如图,棱柱的侧面
是菱形,
.
(Ⅰ)证明:平面平面
;
(Ⅱ)设是
上的点,且
平面
,求
的值.
在平面直角坐标系中,平面区域
中的点的坐标
满足
,从区域
中随机取点
.
(Ⅰ)若,
,求点
位于第四象限的概率;
(Ⅱ)已知直线与圆
相交所截得的弦长为
,求
的概率.