游客
题文

(本小题15分)
先阅读下列不等式的证法,再解决后面的问题:已知,求证
证明:构造函数因为对一切,恒有,所以4-8,从而
(1)若,且,请写出上述结论的推广式;
(2)参考上述证法,对你的结论加以证明;
(3)若,求证.[

科目 数学   题型 解答题   难度 较易
知识点: 合情推理和演绎推理
登录免费查看答案和解析
相关试题

已知动圆与直线相切,且与定圆外切,求动圆圆心的轨迹方程.

如图,在平行六面体中,的中点,设

(1)用表示
(2)求的长.

已知圆及点
(1)在圆上,求线段的长及直线的斜率;
(2)若为圆上任一点,求的最大值和最小值;
(3)若实数满足,求的最大值和最小值.

已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半,
求:(1)动点M的轨迹方程;(2)若N为线段AM的中点,试求点N的轨迹.

已知圆x2+y2+x-6y+3=0与直线x+2y-3=0的两个交点为P、Q,求以PQ为直径的圆的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号