在A、B、C、D四小题中只能选做2题,每小题10,共计20分。请在答题卡指定区域作答。解答应写出文字
说明、证明过程或演算
步骤。
A、选修4-1:几何证明选讲
如图,已知梯形ABCD为圆内接四边形,AD//BC,过C作该圆的切线,交AD的延长线于E,求证:ΔABC∽ΔEDC。
B、选修4-2:矩形与变换
已知为矩阵
属于λ的一个特征向量,求实数a,λ的值及A2。
C、选修4-4:坐标系与参数方程在平面直角坐标系xoy中,曲线C的参数方程为
(α为参数),曲线D的参数方程为
,(t为参数)。若曲线C、D有公共点,求实数m的取值范围。
D、选修4-5:不等式选讲
已知a,b都是正实数,且ab=2。求证:(1+2a)(1+b)≥9。
(坐标系与参数方程选做题)极坐标系中,直线l的极坐标方程为ρsin(θ+)=2,则极点在直线l上的射影的极坐标是__________.
(几何证明选讲选做题)如图所示,圆的内接△ABC的∠C的平分线CD
延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段
BE=.
.(本小题满分13分)
已知数列是其前
项和,且
.
(1)求数列的通项公式;
(2)设是数列
的前
项和
,求T10的值
(本小题满分12分)已知函数(
>0),若函数
的最小正周期为
.
(1)求的值,并求函数
的最大值
(2)若0<x<,当f(x)=
时,求
的值
(本小题满分14分)
已知函数f(x)=-x3+bx2+cx+bc,
(1)若函数f(x)在x=1处有极值-,试确定b、c的值;
(2)在(1)的条件下,曲线y=f(x)+m与x轴仅有一个交点,求实数m的取值范围;
(3)记g(x)=|f′(x)|(-1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.
(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2)