、如图,一块半径为,圆心角为
的扇形木板
,现要用其截出一块面积最大的矩形木板,下面提供了两种截出方案,试比较两种方案截出的最大矩形面积哪个最大?请说明理由。
(本小题满分10分)设函数
(I)解不等式;
(II)若关于x的不等式恒成立,试求a的取值范围.
已知函数(
R).
(1) 当时,求函数
的极值;
(2)若函数的图象与
轴有且只有一个交点,求a的取值范围.
(本小题满分14分)
观察下列三角形数表
1 -----------第一行
2 2 -----------第二行
3 4 3 -----------第三行
4 7 7 4 -----------第四行
5 11 14 11 5
…… … …
…… … ……
假设第行的第二个数为
,
(Ⅰ)依次写出第六行的所有个数字;
(Ⅱ)归纳出的关系式并求出
的通项公式;
(Ⅲ)设求证:
(本小题满分14分)
设椭圆的离心率为
=
,点
是椭圆上的一点,
且点到椭圆
两焦点的距离之和为4.
(1)求椭圆的方程;
(2)椭圆上一动点
关于直线
的对称点为
,
求的取值范围.
(本小题满分14分)如图6,是圆柱的母线,
是圆柱底面圆的直径,
是底面圆周上异于
的任意一点,
(1)求证:平面
;
(2)求三棱锥的体积的最大值.