(本小题满分14分)
已知抛物线:
和点
,若抛物线
上存在不同两点
、
满足
.
(1)求实数的取值范围;
(2)当时,抛物线
上是否存在异于
、
的点
,使得经过
、
、
三点的圆和抛物线
在点
处有相同的切线,若存在,求出点
的坐标,若不存在,请说明理由.
设数列的前
项和为
,且
.
(1)求证:数列是等比数列;
(2)求数列的前
项和
.
如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.
(1)求证:PC //平面BDE;
(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.
(本小题满分10分)已知函数.
(1)求函数的单调递增区间;
(2)内角
的对边长分别为
,若
,且
试求
和
.
已知函数.
(1)若为
的极值点,求实数
的值;
(2)若在
上为增函数,求实数
的取值范围;
(3)当时,方程
有实根,求实数
的最大值.
设函数的图象在点
处的切线的斜率为
,且函数
为偶函数.若函数
满足下列条件:
①;
②对一切实数,不等式
恒成立.
(1)求函数的表达式;
(2)求证:.