(本小题满分14分)如图5,已知平面,平面,△为等边三角形,,为的中点.(1)求证:平面;(2)求证:平面平面;(3)求直线和平面所成角的正弦值.
设双曲线的两个焦点分别为,离心率为2. (Ⅰ)求此双曲线的渐近线的方程; (Ⅱ)若、分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线。
已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.
F1、F2是的两个焦点,M是双曲线上一点,且,求三角形△F1MF2的面积.
已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.
如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点. (Ⅰ)证明:平面; (Ⅱ)求二面角的余弦值.(本题12分)
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号