(本小题满分12分)某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少,能使利润总额最大?
(本小题满分12分)圆经过点和
.
(1)若圆的面积最小,求圆的方程;
(2)若圆心在直线上,求圆的方程。
(本小题满分12分)已知直线的方程为
, 求直线
的方程, 使得:
(1) 与
平行, 且过点(-1,3) ;
(2) 与
垂直, 且
与两轴围成的三角形面积为4.
设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点
。
(1)若直线m与x轴正半轴的交点为T,且,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若
(T为(1)中的点)的取值范围。
已知离心率为的椭圆
过点
,
为坐标原点,平行于
的直线
交椭圆于
不同的两点
。
(1)求椭圆的方程。
(2)证明:若直线的斜率分别为
、
,求证:
+
=0。