如图,在平面直角坐标系中,四边形为矩形,
,
,
为直线
上一动点,将直线
绕点
逆时针方向旋转
交直线
于点
;
(1)当点在线段
上运动(不与
重合)时,求证:OA·BQ=AP·BP;
(2)在(1)成立的条件下,设点的横坐标为
,线段
的长度为
,求出
关于
的函数解析式,并判断
是否存在最小值,若存在,请求出最小值;若不存在,请说明理由。
(3)直线上是否存在点
,使
为等腰三角形,若存在,请求出点
的坐标;若不存在,请说明理由。
如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD于点E.
(1)求证:△CDE∽△FAE.
(2)当E是AD的中点且BC=2CD时,求证:∠F=∠BCF.
在旧城改造中,要定向向右爆破拆除一烟囱AB(如图),在地面上事先划定以B为圆心,半径与AB相等的危险区,现在从距离B点左侧18米远的建筑物CD顶端C点测得A点仰角为45°,B点的俯角为30°,问:若离B点右侧30米远的保护文物建筑EF,在爆破拆除烟囱时是否有危险?(计算中保留根号)
小明和小丽在做游戏:有A、B两个不透明的布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有四个除标号外完全相同的小球,小球上分别标有数字1,2,3.先从A布袋中随机取出一个小球,用m表示取出的球上的标号,再从B布袋中随机取出一个小球,用n表示取出的球上的标号.规定当m+n为偶数时小明获胜,否则小丽获胜,请用树状图或列表法,求出小明获胜的概率,并说明这个游戏是否公平?
已知x=,
,求x2-5xy+y2的值.
解方程:(2x-1)2-2(2x-1)-3=0