(本小题满分12分)如图,在四棱锥P - ABCD中,ΔPCD为等边三角形,四边形ABCD为矩形,平面PDC丄平面ABCD,M,N、E分别是AB,PD,PC的中点,AB =2AD.(I)求证DE丄MN;(II)求二面角B-PA-D的余弦值.
若点在线段上,且,求的面积;
坐标原点,定点B的坐标为(2,0)。 (1)若动点M满足,求动点M的轨迹C 的方程; (2)若过点B的直线(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F(E在B、F之间),且,试求λ的取值范围。
(1)当a=-1时,求函数图像上的点到直线距离的最小值; (2)是否存在正实数a,使对一切正实数x都成立?若存在,求出a的取值范围;若不存在,请说明理由
(1)企业要成为不亏损企业,每月至少生产多少台电机? (2)当月总产值为多少时,企业亏损量严重,最大亏损额为多少?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号