(本题12分)
已知直线
(1)若平行,求
的值。
(2)若垂直,求
的值。
已知函数. 的部分图象如图所示,其中点
是图象的一个最高点.
(1)求函数的解析式;
(2)已知且
,求
.
已知.
(1)若存在单调递减区间,求实数
的取值范围;
(2)若,求证:当
时,
恒成立;
(3)设,证明:
.
已知顶点为原点的抛物线
的焦点
与椭圆
的右焦点重合
与
在第一和第四象限的交点分别为
.
(1)若△AOB是边长为的正三角形,求抛物线
的方程;
(2)若,求椭圆
的离心率
;
(3)点为椭圆
上的任一点,若直线
、
分别与
轴交于点
和
,证明:
.
已知正数数列中,
,前
项和为
,对任意
,
、
、
成等差数列.
(1)求和
;
(2)设,数列
的前
项和为
,当
时,证明:
.
如图,三棱柱中,△ABC是正三角形,
,平面
平面
,
.
(1)证明:;
(2)证明:求二面角的余弦值;
(3)设点是平面
内的动点,求
的最小值.