.某商店在1-10月份的时间销售A、B两种电子产品,已知产品A每个月的售价 (元)
与月份 (
且
为整数)之间的关系可用如下表格表示:
时间 ![]() |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
售价 ![]() |
720 |
360 |
240 |
180 |
144 |
120 |
120 |
120 |
120 |
120 |
已知产品A的进价为140元/件,A产品的销量 (件)与月份
的关系式为
已知B产品的进价为450元/件,产品B的售价
(元)与月份
(
且
为整数)之间的函数关系式为
,产品B的销量
(件)与月份
的关系可用如下的图像反映.
已知该商店每个月需固定支出500元的物管杂费以及5个员工的工资,已知员工每人每月的工资为1500元.请结合上述信息解答下列问题:
(1)请观察表格与图像,用我们所学习的一次函数,反比例函数,或者二次函数写出 与
的
函数关系式, 与
的函数关系式;
(2)试表示出商店每月销售A、B两种产品的总利润 (将每月必要的开支除去)与月份
的
函数关系式,并求出该商店在哪个月时获得最大利润;
(3)为了鼓励员 工的积极性,在最后4个月的销售期间商店老板决定奖励员工,除了正常的
工资外,每卖一件A产品,每个员工都提成0.75元,每卖一件B产品每个员工都提成10
元,这样A产品的销量将每月减少 件,而B产品的销量将每月增加
件;请问在第几月时总利润(除去当月所有支出部分)可达到16750元?
(参考数据: )
计算和化简
⑴
⑵
⑶
⑷
⑸
⑹
在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.
(1)当点D在边BC上时,如图①,求证:DE+DF=AC.
(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.
(3)若AC=6,DE=4,则DF= .
已知:如图,在□ABCD中,∠BCD的平分线CE交AD于E,∠ABC的平分线BG交CE于F,交AD于G.
(1)试找出图中的等腰三角形,并选择一个加以说明
(2)试说明:AE=DG.
(3)若BG将AD分成3:2的两部分,且AD=10,求□ABCD的周长。
在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数![]() |
100 |
200 |
300 |
500 |
800 |
1000 |
3000 |
摸到白球的次数![]() |
65 |
124 |
178 |
302 |
481 |
599 |
1803 |
摸到白球的频率![]() |
0.65 |
0.62 |
0.593 |
0.604 |
0.601 |
0.599 |
0.601 |
(1)请估计:当很大时,摸到白球的频率将会接近.(精确到0.1)
(2)假如你摸一次,你摸到白球的概率.
(3)试估算盒子里黑、白两种颜色的球各有多少只?
在结束了初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:
(1)图1中“统计与概率”所在扇形的圆心角为度;
(2)图2、3中的,
;
(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?