已知数列是各项均为正数的等差数列,公差为d(d
0).在
之间和b,c之间共插入
个实数,使得这
个数构成等比数列,其公比为q.
(1)求证:;
(2)若,求
的值;
(3)若插入的n个数中,有s个位于a,b之间,t个位于b,c之间,且都为奇数,试比较s与t的大小,并求插入的n个数的乘积(用
表示).
已知曲线C:
(t为参数), C
:
(
为参数)。
(1)分别求出曲线C,C
的普通方程;
(2)若C上的点P对应的参数为
,Q为C
上的动点,求
中点
到直线
(t为参数)距离的最小值及此时Q点坐标.
如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.
(1)求证:AT2=BT·AD;
(2)E、F是BC的三等分点,且DE=DF,求∠A.
(本小题满分12分)设函数(
).
(1)当时,讨论函数
的单调性;
(2)若对任意及任意
,
,恒有
成立,求实数
的取值范围.
已知椭圆的离心率为
,右焦点为
,过原点
的直线
交椭圆于
两点,线段
的垂直平分线交椭圆
于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:为定值,并求
面积的最小值.
甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.