我校高二年级举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题连续两次答错的概率为(已知甲回答每个问题的正确率相同,并且相互之间没有影响).(1)求甲选手回答一个问题的正确率;(2)求选手甲可进入决赛的概率;(3)设选手甲在初赛中答题的个数为,试写出的分布列,并求的数学期望.
O为坐标原点,直线在轴和轴上的截距分别是和,且交抛物线两点。 (1)写出直线的截距式方程 (2))证明: (3)当时,求的大小。
已知函数 (1)判断函数的奇偶性; (2)若在区间是增函数,求实数的取值范围。
如图所示,在棱长为的 正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。 (Ⅰ)求证:BH//平面A1EFD1; (Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。
已知数列是等差数列,,,为数列的前项和 (1)求和; (2)若,求数列的前项和
已知向量,,函数. (Ⅰ)求的最小正周期; (Ⅱ)若,求的最大值和最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号