(1)求证;
(2)比较的大小,并证明
(3)是否存在证明你的结论。
如图,已知,
分别是正方形
边
、
的中点,
与
交于点
,
、
都垂直于平面
,且
,
,
是线段
上一动点.
(Ⅰ)求证:平面平面
;
(Ⅱ)若平面
,试求
的值;
(Ⅲ)当是
中点时,求二面角
的余弦值.
某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.
(1)请根据图中所给数据,求出a的值;
(2)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在[60,70)内的人数,求X的分布列和数学期望.
数列是递增的等比数列,且
.
(Ⅰ)若,求证:数列
是等差数列;
(Ⅱ)若,求
的最大值.
已知函数的图象经过点
.
(1)求函数的最小正周期与单调递增区间.
(2)若,且
,求
的值.
(本小题满分13分)已知函数.
(Ⅰ)当时,求函数
的极值;
(Ⅱ)时,讨论
的单调性;
(Ⅲ)若对任意的恒有
成立,求实数
的取值范围.