如图甲所示,空间存在竖直向上磁感应强度B="1" T的匀强磁场,ab、cd是相互平行间距L="1" m的长直导轨,它们处在同一水平面内,左边通过金属杆ac相连,质量m="1" kg的导体棒MN水平放置在导轨上,已知MN与ac的总电阻R="0.2" Ω,其他电阻不计.导体棒MN通过不可伸长细线经光滑定滑轮与质量也为m的重物相连,现将重物由如图所示的静止状态释放后与导体棒MN一起运动,并始终保持导体棒与导轨接触良好.已知导体棒与导轨间的动摩擦因数为μ=0.5,其他摩擦不计,导轨足够长,重物离地面足够高,重力加速度g取10 m/s2.
(1)请定性说明:导体棒MN在达到匀速运动前,速度和加速度是如何变化的;到达匀速运动时MN受到的哪些力合力为零,并在图乙中定性画出棒从静止至匀速的过程中所受的安培力大小随时间变化的图象(不需说明理由及计算达到匀速的时间).
(2)若已知重物下降高度h="2" m时,导体棒恰好开始做匀速运动,在此过程中ac边产生的焦耳热Q="3" J,求导体棒MN的电阻值r.
某高中物理课程基地拟采购一批实验器材,增强学生对电偏转和磁偏转研究的动手能力,其核心结构原理可简化为题图所示.AB、CD间的区域有竖直向上的匀强电场,在CD的右侧有一与CD相切于M点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O点以水平初速度正对P点进入该电场后,从M点飞离CD边界,再经磁场偏转后又从N点垂直于CD边界回到电场区域,并恰能返回O点.已知OP间距离为
,粒子质量为
,电荷量为
,电场强度大小
,粒子重力不计.试求:
(1)粒子从M点飞离CD边界时的速度大小;
(2)P、N两点间的距离;
(3)磁感应强度的大小和圆形有界匀强磁场的半径.
如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:
(1)导体棒到达轨道底端时的速度大小;
(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;
(3)整个运动过程中,电阻R产生的焦耳热Q.
如图所示,U形导轨固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,金属棒与导轨围成正方形,边长为L,金属棒接入电路的电阻为R,导轨的电阻不计.从t=0时刻起,加一竖直向上的匀强磁场,其磁感应强度随时间的变化规律为B=kt,(k>0),设金属棒与导轨间的最大静摩擦力等于滑动摩擦力.
(1)求金属棒滑动前,通过金属棒的电流的大小和方向;
(2)t为多大时,金属棒开始移动?
(3)从t=0时刻起到金属棒开始运动的过程中,金属棒中产生的焦耳热多大?
如图所示,在x轴上方有磁感应强度为B的匀强磁场,一个质量为m,电荷量为的粒子,以速度v从O点射入磁场,已知
,粒子重力不计,求:
(1)粒子的运动半径,并在图中定性地画出粒子在磁场中运动的轨迹;
(2)粒子在磁场中运动的时间;
(3)粒子经过x轴和y轴时的坐标.
如图所示,竖直放置的半圆形光滑绝缘轨道半径为R,圆心为O,下端与绝缘水平轨道在B点平滑连接.一质量为m、带电量为+q的物块(可视为质点),置于水平轨道上的A点.已知A、B两点间的距离为L,物块与水平轨道间的动摩擦因数为μ,重力加速度为g.
(1)若物块能到达的最高点是半圆形轨道上与圆心O等高的C点,则物块在A点水平向左运动的初速度应为多大?
(2)若整个装置处于方向竖直向上的匀强电场中,物块在A点水平向左运动的初速度vA=,沿轨道恰好能运动到最高点D,向右飞出.则匀强电场的场强为多大?
(3)若整个装置处于水平向左的匀强电场中,场强的大小E=.现将物块从A点由静止释放,运动过程中始终不脱离轨道,求物块第2n(n=1、2、3…)次经过B点时的速度大小.