本小题满分12分)
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.
(本小题满分16分)已知函数在
处的切线
与直线
平行.
(1)求实数的值;
(2)若关于的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(3)记函数,设
是函数
的两个极值点,若
,且
恒成立,求实数
的最大值.
(本小题满分16分)对于给定数列,如果存在实常数
使得
对于任意
都成立,我们称数列
是 “线性数列”.
(1)若,
,
,数列
、
是否为“线性数列”?若是,指出它对应的实常数
,若不是,请说明理由;
(2)证明:若数列是“线性数列”,则数列
也是“线性数列”;
(3)若数列满足
,
,
为常数.求数列
前
项的和.
(本小题满分16分)已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且APB面积的最大值为2
.
(1)求椭圆C的方程及离心率;
(2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
(本小题满分14分)某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.
(1)分别用表示
和S的函数关系式,并给出定义域;
(2)怎样设计能使S取得最大值,并求出最大值.
(本小题满分14分)如图,已知斜三棱柱中,
,
为
的中点.
(1)若,求证:
;
(2)求证:∥平面
.