某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.
(1)该顾客至少可得到 元购物券,至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
如图,某校教学楼 后方有一斜坡,已知斜坡 的长为12米,坡角 为 ,根据有关部门的规定, 时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡 进行改造,在保持坡脚 不动的情况下,学校至少要把坡顶 向后水平移动多少米才能保证教学楼的安全?(结果取整数)
(参考数据: , , , , ,
如图,已知直线 与 相切于点 ,直线 与 相交于 , 两点.
(1)求证: ;
(2)若 ,求图中阴影部分的面积.
某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.
身高分组 |
频数 |
频率 |
|
3 |
0.06 |
|
7 |
0.14 |
|
|
0.28 |
|
13 |
|
|
9 |
0.18 |
|
3 |
0.06 |
|
1 |
0.02 |
根据以上统计图表完成下列问题:
(1)统计表中 , ,并将频数分布直方图补充完整;
(2)在这次测量中两班男生身高的中位数在: 范围内;
(3)在身高 的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.
解不等式组 ,并将它的解集在数轴上表示出来.
如图,已知 的圆心为点 ,抛物线 过点 ,与 交于 、 两点,连接 、 ,且 , 、 两点的纵坐标分别是2、1.
(1)请直接写出点 的坐标,并求 、 的值;
(2)直线 经过点 ,与 轴交于点 .点 (与点 不重合)在该直线上,且 ,请判断点 是否在此抛物线上,并说明理由;
(3)如果直线 与 相切,请直接写出满足此条件的直线解析式.