游客
题文

如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

(1)请你帮小萍求出x的值.
(2)  参考小萍的思路,探究并解答新问题:
如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应)

科目 数学   题型 解答题   难度 较易
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

为了提高新产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场。现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍。
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?

如图,△ABC的中线BD、CE交于点O,F、G分别是BO、CO的中点。
求证:四边形EFGD为平行四边形。

如图,△ABC中

(1)画出△ABC关于x轴对称的△
(2)将△ABC绕原点O旋转180°,画出旋转后的△

化简求值
,其中

解方程:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号