如图1,平面直角坐标系xOy中,A
,B
.将△OAB绕点O顺时针旋转a角(0°<a<90°)得到△OCD(O,A,B的对应点分别为O,C,D),将△OAB沿
轴负方向平移m个单位得到△EFG(m>0,O,A,B的
对应点分别为E,F,G),a,m的值恰使点C,D,F落在同一反比例函数
(k≠0)的图象上.
(1)∠AOB=" " °,a=" " °;
(2)求经过点A,B,F的抛物线的解析式;
(3)若(2)中抛物线的顶点为M,抛物线与直线EF的另一个交点为H,抛物线上的点P满足以P,M,F,A为顶点的四边形的面积与四边形MFAH的面积相等(点P不与点H重合),请直接写出满足条件的点P的个数,并求位于直线EF上方的点P的坐标.
如图,在等腰梯形ABCD中,AD∥BC,点M,N分别是AD,BC的中点,点E,F分别是BM,CM的中点.
(1)求证:四边形MENF是菱形;
(2)当四边形MENF是正方形时,求证:等腰梯形ABCD的高是底边BC的一半.
“情系玉树大爱无疆”,在玉树地震后,某中学全体师生踊跃捐款,向灾区人民献爱心. 为了了解该校学生捐款情况,对其中一个班50名学生的捐款数x(元)分五组进行统计,第一组:1≤x≤5,第二组:6≤x≤10,第三组:11≤x≤15,第四组:16≤x≤20;,第五组:x≥21,并绘制如下频数分布直方图(假定每名学生捐款数均为整数),解答下列问题:
(1)补全频数分布直方图(用阴影部分表示);
(2)该班一个学生说:“我的捐款数在班上是中位数”, 请给出该生捐款数可能的最小范围.
(3)已知这个中学共有学生1800人,请估算该校捐款数不少于16元的学生人数.
如图,反比例函数与一次函数
的图象相交于A(1,3),B(n,–1)两点,求反比例函数与一次函数的解析式.
两条完全相同的矩形纸片、
如图放置,
.求证:四边形
为菱形.
解方程: