(本小题满分10分)选修4-5:不等式选讲
设(
).
(Ⅰ)当时,求函数
的定义域;
(Ⅱ)若当,
恒成立,求实数
的取值范围.
如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).
(1)求证:平面EFG∥平面PAB;
(2)若点Q是线段PB的中点,求证:PC⊥平面ADQ;
(3)求三棱锥C-EFG的体积.
如图,是半径为
的半圆,
为直径,点
为
的中点,点
和点
为线段
的三等分点,平面
外一点
满足
平面
,
.
(1)证明:;
(2)求点到平面
的距离.
如图,三角形是边长为4的正三角形,
底面
,
,点
是
的中点,点
在
上,且
.
(1)证明:平面平面
;
(2)求直线和平面
所成角的正弦值.
如图,在边长为1的正方体ABCD-A1B1C1D1中,求证:
(1)A1C^平面BDC1;
(2)求三棱锥A1—BDC1的体积。
长方体中,
,
,点
为
中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;