若函数对任意的
,均有
,则称函数
具有性质
.
(Ⅰ)判断下面两个函数是否具有性质,并说明理由.
①; ②
.
(Ⅱ)若函数具有性质
,且
(
),
求证:对任意有
;
(Ⅲ)在(Ⅱ)的条件下,是否对任意均有
.若成立给出证明,若不成立给出反例.
如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)记三棱锥P- ABD体积为V1,四棱锥P—BDEF体积为V2.求当PB取得最小值时的V1:V2值.
在直角坐标系xOy中,已知椭圆C:(a >0)与x轴的正半轴交于点P.点Q的坐
标为(3,3),=6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q且斜率为的直线交椭圆C于A、B两点,求△AOB的面积
已知函数f(x)=.
(Ⅰ)求函数f()的值;
(Ⅱ)求函数f(x)的单调递减区间.
某教室有4扇编号为a、,b、c、d的窗户和2扇编号为x、y的门,窗户d敞开,其余门和窗户均被关闭.为保持教室空气流通,班长在这些关闭的门和窗户中随机地敞开2扇.
(Ⅰ)记“班长在这些关闭的门和窗户中随机地敞开2扇”为事件A,请列出A包含的基本事件;
(Ⅱ)求至少有1扇门被班长敞开的概率.
在数列{an}中,a1=,点(an,an+1)(n∈N*)在直线y=x+
上
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=,求数列{bn}的前n项和Tn.