如图所示,在虚线AB的左侧固定着一个半径R=0.2m的1/4光滑绝缘竖直轨道,轨道末端水平,下端距地面高H=5m,虚线AB右侧存在水平向右的匀强电场,场强E=2×103 V/m。有一带负电的小球从轨道最高点由静止滑下,最终落在水平地面上,已知小球的质量m=2g,带电量q=1×10-6 C,小球在运动中电量保持不变,不计空气阻力(取g=10m/s2)求:
(1)小球落地的位置离虚线AB的距离;
(2)小球落地时的速度。
如图所示,在竖直平面内,倾角为37°长L=1.8m的粗糙斜面AB,上端与光滑圆弧BCD相切于B点,D为圆弧的最高点,圆弧半径R=0.4m,现在一质量为m=0.2kg可视为质点的小物体,从A点以一定的初速度沿AB上滑,已知小物体与斜面间的动摩擦数。
(1)上滑时,若恰好能到达B点,求初速度大小和整个过程中因摩擦而产生的热量。
(2)上滑时,若恰好通过D点,求上滑的初速度。
(3)上滑时,是否存在合适的初速度,使小物体通过D点后再落回到A点,若能求出其初速度,若不能说明原因。
一列火车在平直轨道上做匀加速直线运动,加速度大小为a=3m/s2。先后经过A、B两根电线杆所用时间分别为tA=10s和tB=8s。已知火车车头到达电线杆A时的速度为v0=5m/s。求:
(1)火车的长度L;
(2)火车车头在A、B之间运动所需时间。
为了提高运动员奔跑时下肢向后的蹬踏力量,在训练中,让运动员腰部系绳拖汽车轮胎奔跑,已知运动员在奔跑中拖绳上端与在面的高度为1.2m,且恒定,轻质无弹性的拖绳长2m,运动员质量为60 kg,车胎质量为12kg,车胎与跑道间的动摩擦因数为,如图甲所示,将运动员某次拖胎奔跑100m当做连续过程,抽象处理后的
图象如图乙所示,
,不计空气阻力。求:
(1)运动员加速过程中的加速度及跑完100m后用的时间;
(2)若在加速阶段,绳子对轮胎的拉力及运动员与地面间的摩擦力。
滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来。如图所示是滑板运动的轨道,BC和DE是两段光滑圆弧形轨道,BC段的圆心为O点,圆心角为60º,半径OC与水平轨道CD垂直,水平轨道CD段粗糙且长8m。一运动员从轨道上的A点以3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回。已知运动员和滑板的总质量为60kg,B、E两点与水平面CD的竖直高度分别为h和H,且h=2m,H=2.8m,取10m/s2。求:
(1)运动员从A运动到达B点时的速度大小vB;
(2)轨道CD段的动摩擦因数;
(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,请求出回到B点时速度的大小;如不能,则最后停在何处?
某校一课外活动小组自制一枚火箭,质量为2kg,设火箭发射后始终在垂直于地面的方向上运动。火箭点火后可认为做匀加速直线运动,燃料的推动力恒为40N,经过4 s到达离地面40m高处时燃料恰好用完,设火箭在运动过程中质量不变、空气阻力不变,取g="10" m/s2,求:
(1)空气阻力的大小;
(2)火箭上升离地面的最大高度;
(3)火箭落地时的速度。