(本小题满分14分)
已知函数,当
时,
取得极
小值
.
(1)求,
的值;
(2)设直线,曲线
.若直线
与曲线
同时满足下列两个条件:
①直线与曲线
相切且至少有两个
切点;
②对任意都有
.则称直线
为曲线
的“上夹线”.
试证明:直线是曲线
的“上夹线”.
(3)记,设
是方程
的实数
根,若对于
定义域中任意的
、
,当
,且
时,问是否存在一个最小的正整数
,使得
恒成立,若存在请求出
的值;若不存在请说明理由.