如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E、宽度为L。在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,圆形磁场区域半径为r。当一带正电的粒子(质量为m,电荷量为q)从A点静止释放后,在M点离开电场,并沿半径方向射入磁场区域,磁感应强度为B,粒子恰好从N点射出,O为圆心,∠MON=120°,粒子重力忽略不计。求:
(1)粒子经电场加速后,进入磁场时速度v的大小;
(2)匀强磁场的磁感应强度B的大小和粒子在电场、磁场中运动的总时间t;
(3)若粒子在离开磁场前某时刻,磁感应强度方向不变,大小突然变为B1,此后粒子恰好被束缚在该磁场中,则B1的最小值为多少?
将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。(取g=10m/s2)
半径R=20cm的竖直放置的圆轨道与平直轨道相连接,如图9所示。质量m=50g的小球A以一定的初速度由直轨道向左运动,并沿圆轨道的内壁冲上去。如果球A经过N点时速度v1=4m/s,球A经过轨道最高点M时对轨道的压力为0.5N,取g=10m/s2,求:
(1)小球落地点P与N之间的距离?
(2)小球从N运动到M这一段过程中克服阻力做的功?
为了实现登月计划,先要测算地月之间的距离。已知地球表面重力加速度为g,地球半径为R,在地面附近物体受到地球的万有引力近似等于物体在地面上的重力,又知月球绕地球运动的周期为T,万有引力常量为G。则:
(1)地球的质量为多少?
(2)地月之间的距离约为多少?
钍核90Th发生衰变生成镭核88Ra并放出一个粒子.设该粒子的质量为m、电荷量为q,它进入电势差为U的带窄缝的平行平板电极S1和S2间电场时,其速率为v0,经电场加速后,沿Ox方向进入磁感应强度为B、方向垂直纸面向外的有界匀强磁场,Ox垂直平板电极S2,当粒子从P点离开磁场时,其速度方向与Ox方向的夹角θ=60°,如图所示,整个装置处于真空中.
(1)写出钍核衰变方程;
(2)求粒子在磁场中沿圆弧运动的轨道半径R;
(3)求粒子在磁场中运动所用时间t.
我们知道氢原子从低能级跃迁至高能级需吸收能量,通常吸收能量的方式有两种:一种是用一定能量的光子使氢原子跃迁;另一种是用一定能量的实物粒子使氢原子跃迁。设一个质量为m的电子,以初速度v与质量为M的静止的氢原子发生对心碰撞。(1)在什么条件下系统损失的动能最大?此时系统的速度为多少?(2)如果电子初速度未知,系统减少的动能全部用来让处于基态的氢原子(基态能量为-E)电离,则电子的初动能最少应为多少?