(本小题满分13分)
在锐角中,
三内角所对的边分别为
.
设,
(Ⅰ)若,求
的面积;
(Ⅱ)求的最大值.
(本小题满分15分)已知函数且
.
(Ⅰ)试用含式子表示
;(Ⅱ)求
的单调区间;(Ⅲ)若
,试求
在区间
上的最大值.
已知数列的前n项和为
,对任意的
,点
,均在函数
的图像上.(Ⅰ)求数列
的通项公式;
(Ⅱ)记,求使
成立的
的最大值.
已知向量 ,
,函数
。(Ⅰ)求
的最小正周期;(II)若
,求
的值域.
已知菱形的边长为2,对角线
与
交于点
,且
,
为
的中点.将此菱形沿对角线
折成直二面角
.
(I)求证:;
(II)求直线与面
所成角的余弦值大小.
已知函数且导数
.
(Ⅰ)试用含有的式子表示
,并求
单调区间;(II)对于函数图象上的不同两点
,如果在函数图象上存在点
(其中
)使得点
处的切线
,则称
存在“伴侣切线”.特别地,当
时,又称
存在“中值伴侣切线”.试问:在函数
上是否存在两点
、
使得它存在“中值伴侣切线”,若存在,求出
、
的坐标,若不存在,说明理由.