(本小题满分14分)已知椭圆:上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(Ⅰ) 求椭圆的方程;(Ⅱ) 过点(,)的动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.
在中,求的值。
(1)(2)
已知定点及椭圆,过点的动直线与椭圆相交于两点. (1)若线段中点的横坐标是,求直线的方程; (2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.
设是公比大于1的等比数列,为数列的前项和.已知, 且构成等差数列. (1)求数列的通项公式; (2)令,求数列的前项和.
设,分别为椭圆的左、右焦点,过的直 线与椭圆相交于,两点,直线的倾斜角为,到直线的距离为; (1)求椭圆的焦距; (2)如果,求椭圆的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号