(本小题满分14分)椭圆E中心在原点O,焦点在x轴上,其离心率e=,过点C(-1,0)的直线l与椭圆E相交于A、B两点,且C分有向线段
的比为2.
(1)用直线l的斜率k(k≠0)表示△OAB的面积;
(2)当△OAB的面积最大时,求椭圆E的方程.
极坐标系与直角坐标系有相同的长度单位,以原点
为极点,以
正半轴为极轴,已知曲线
的极坐标方程为
,曲线
的参数方程是
(
为参数,
,射线
与曲线
交于极点
外的三点
(Ⅰ)求证:;
(Ⅱ)当时,
两点在曲线
上,求
与
的值.
如图,AB是⊙O的直径 ,AC是弦 ,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.OE交AD于点F.
(Ⅰ)求证:DE是⊙O的切线;
(Ⅱ)若,求
的值.
已知函数
(I)当时,讨论函数
的单调性:
(Ⅱ)若函数的图像上存在不同两点
,
,设线段
的中点为
,使得
在点
处的切线
与直线
平行或重合,则说函数
是“中值平衡函数”,切线
叫做函数
的“中值平衡切线”.
试判断函数是否是“中值平衡函数”?若是,判断函数
的“中值平衡切线”的条数;若不是,说明理由.
已知椭圆:
的离心率等于
,点
在椭圆上.
(I)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点分别为
,
,过点
的动直线
与椭圆
相交于
,
两点,是否存在定直线
:
,使得
与
的交点
总在直线
上?若存在,求出一个满足条件的
值;若不存在,说明理由。
如图,已知菱形所在平面与直角梯形
所在平面互相垂直,
,
点
,
分别是线段
,
的中点.
(I)求证:平面平面
;
(Ⅱ)点在直线
上,且
//平面
,求平面
与平面
所成角的余弦值。