装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击。通过对一下简化模型的计算可以粗略说明其原因。质量为、厚度为的钢板静止在水平光滑桌面上。质量为的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿。现把钢板分成厚度均为、质量均为的相同两块,间隔一段距离水平放置,如图所示。若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度。设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响。
如图1所示,宽度为的竖直狭长区域内(边界为
),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为
,
表示电场方向竖直向上。
时,一带正电、质量为
的微粒从左边界上的
点以水平速度
射入该区域,沿直线运动到
点后,做一次完整的圆周运动,再沿直线运动到右边界上的
点。
为线段
的中点,重力加速度为g。上述
、
、
、
、
为已知量。
(1)求微粒所带电荷量和磁感应强度
的大小;
(2)求电场变化的周期;
(3)改变宽度,使微粒仍能按上述运动过程通过相应宽度的区域,求
的最小值。
如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板下方有一磁感应强度为B的匀强磁场。带电量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动。忽略重力的影响,求:
(1)匀强电场场强E的大小;
(2)粒子从电场射出时速度ν的大小;
(3)粒子在磁场中做匀速圆周运动的半径R。
如图所示的平面直角坐标系xoy,在第Ⅰ象限内有平行于轴的匀强电场,方向沿
正方向;在第Ⅳ象限的正三角形
区域内有匀强电场,方向垂直于xoy平面向里,正三角形边长为L,且
边与
轴平行。一质量为
、电荷量为
的粒子,从
轴上的
点,以大小为
的速度沿
轴正方向射入电场,通过电场后从
轴上的
点进入第Ⅳ象限,又经过磁场从
轴上的某点进入第Ⅲ象限,且速度与
轴负方向成45°角,不计粒子所受的重力。求:
(1)电场强度E的大小;
(2)粒子到达点时速度的大小和方向;
(3)区域内磁场的磁感应强度
的最小值。
如图所示,在x轴下方的区域内存在+y方向的匀强电场,电场强度为E。在x轴上方以原点O为圆心、半径为R的半圆形区域内存在匀强磁场,磁场的方向垂直于xoy平面向外,磁感应强度为B。 y轴上的A点与O点的距离为d,一个质量为m、电荷量为q的带正电粒子从A点由静止释放,经电场加速后从O点射入磁场,不计粒子的重力。
(1)求粒子在磁场中运动的轨道半径r;
(2)要使粒子进人磁场之后不再经过x轴,求电场强度的取值范围;
(3)改变电场强度,使得粒子经过x轴时与x轴成θ=300的夹角,求此时粒子在磁场中的运动时间t及经过x轴的位置坐标值x0。
某学习小组为了研究影响带电粒子在磁场中偏转的因素,制作了一个自动控制装置,如图所示,滑片P可在R2上滑动,在以O为圆心,半径为R=10cm的圆形区域内,有一个方向垂直纸面向外的水平匀强磁场,磁感应强度大小为B=0.10T。竖直平行放置的两金属板A、K相距为d,连接在电路中,电源电动势E=91V,内阻r=1.0Ω,定值电阻R1=10Ω,滑动变阻器R2的最大阻值为80Ω,S1、S2为A、K板上的两个小孔,且S1、S2跟O在竖直极板的同一直线上,OS2=2R,另有一水平放置的足够长的荧光屏D,O点跟荧光屏D点之间的距离为H。比荷为2.0×105C/kg的离子流由S1进入电场后,通过S2向磁场中心射去,通过磁场后落到荧光屏D上。离子进入电场的初速度、重力、离子之间的作用力均可忽略不计。问:
(1)判断离子的电性,并分段描述离子自S1到荧光屏D的运动情况?
(2)如果离子恰好垂直打在荧光屏上的N点,电压表的示数多大?
(3)电压表的最小示数是多少?要使离子打在荧光屏N点的右侧,可以采取哪些方法?